
Cray Performance Tools
Heidi Poxon

Sr. Principal Engineer
Cray Inc.

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is
granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT,
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their
respective owners.

June 2018 Copyright 2018 Cray Inc.
2

Focus of This Presentation

● Improve your familiarity with the Cray performance
tools
● Add to your bag of tricks for application performance tuning
● Review the mechanics of using Cray performance tools
● Learn how to identify problem areas and learn which tool to use

when

June 2018 Copyright 2018 Cray Inc.
3

Cray Performance Tools

● Reduce the time investment
associated with porting and tuning
applications on Cray systems

● Analyze whole-program behavior
across many nodes to identify
critical performance bottlenecks
within a program

● Improve profiling experience by
using simple and/or advanced
interfaces for a wealth of capability
that targets analyzing the largest
HPC jobs

June 2018 Copyright 2018 Cray Inc.
4

Reveal

June 2018 Copyright 2018 Cray Inc.

● Reduce effort associated with
adding OpenMP to MPI
programs

● Get insight into optimizations
performed by the Cray
compiler

● Add OpenMP as a first step to
parallelize loops that will target
GPUs

● Track requests to memory and
evaluate the bandwidth
contribution of objects within a
program for loop tuning

5

Interfaces Available

● Simple interface (perftools-lite modes) for convenience

● Advanced interface (perftools) for in-depth
performance investigation and tuning assistance as
well as data collection control

● Both offer:
● Whole program analysis across many nodes
● Indication of causes of problems
● Ability to easily switch between the two interfaces

June 2018 Copyright 2018 Cray Inc.
6

pat_run
Profile pre-existing, dynamically linked programs

Collect different performance data for same binary

Get basic performance information on ISV codes

New!

What About Different Compilers?

Cray Performance Tools support the following compilers

● Cray (CCE), Intel, GCC, and Arm Allinea compilers on
Cray XC systems

● Cray (CCE) compiler on Cray CS systems

June 2018 Copyright 2018 Cray Inc.
8

Some Useful Experiments

● Identify slowest areas and notable bottlenecks of a program
● Use perftools-lite
● Good for examining performance characteristics of a program and for scaling analysis

● Focus on MPI communication
● Use perftools-lite first to determine if MPI time is dominant or if there is a load

imbalance between ranks
● Use perftools (pat_build –g mpi) to collect more detailed MPI-specific

information including MPI_SYNC time to detect late arrivers to collectives
● Good for identifying source of imbalance and scaling analysis at targeted final job size

● Focus on loop optimization
● Use perftools-lite-loops
● Good for vectorizing, parallelizing and cache optimization

June 2018 Copyright 2018 Cray Inc.
9

Identify Slowest Areas of a Program (perftools-lite)

● user@login> module load perftools-lite

● Build program

● Run program

● View report to STDOUT (and to .rpt file in experiment
directory)
● Example data directory: stencil_order+49144-225s/

June 2018 Copyright 2018 Cray Inc.
10

Consolidated Performance Data

● Available starting with perftools 6.5.0

● Easily access performance data

● Unique directory name for each experiment

● Same prefix naming scheme as used with multiple xf files
● user@login> pat_report expdir > full_report
● user@login> app2 vhone+73030-20s

● Example directory:
● user@login> ls vhone+73030-20s

ap2-files/ index.ap2 rpt-files/ xf-files/

June 2018 Copyright 2018 Cray Inc.
11

Get Additional Information Without Re-running

● Generate full report
● user@login> pat_report my_data_directory+12s/ > rpt

● Generate report with call tree (or by callers)
● user@login> pat_report –O ct+src

● Generate report without pruning
● user@login> pat_report –P

● Show each MPI rank or each OpenMP thread in report
● user@login> pat_report –s pe=ALL
● user@login> pat_report –s th=ALL

June 2018 Copyright 2018 Cray Inc.
12

Example: perftools-lite Job Summary
CrayPat/X: Version 7.0.1 Revision 3714888 03/07/18 02:11:13

Experiment: lite lite/sample_profile

Number of PEs (MPI ranks): 36

Numbers of PEs per Node: 36

Numbers of Threads per PE: 1

Number of Cores per Socket: 18

Execution start time: Thu Mar 15 11:14:05 2018

System name and speed: nid00030 2.101 GHz (nominal)

Intel Broadwell CPU Family: 6 Model: 79 Stepping: 1

Avg Process Time: 3.70 secs

High Memory: 1,801.4 MBytes 50.0 MBytes per PE

Observed CPU clock boost: 117.2 %

Percent cycles stalled: 38.3 %

Vector intensity (packed instr): 2.6 %

Instr per Cycle: 1.51

I/O Read Rate: 3.676263 MBytes/sec

I/O Write Rate: 0.293086 MBytes/sec

June 2018 Copyright 2018 Cray Inc.
13

Example: perftools-lite Top Time Consumers
Table 1: Profile by Function Group and Function (top 10 functions shown)
Samp% | Samp | Imb. | Imb. |Group

| | Samp | Samp% | Function
| | | | PE=HIDE

100.0% | 55,605.7 | -- | -- |Total
|---
| 56.5% | 31,412.8 | -- | -- |USER
||--
|| 19.7% | 10,944.1 | 290.9 | 2.6% |create_boundary$boundary_
|| 10.7% | 5,937.8 | 214.2 | 3.5% |get_block$blocks_
|| 3.9% | 2,194.4 | 7.6 | 0.3% |create_distrb_balanced$distribution_
|| 2.0% | 1,135.5 | 137.5 | 10.8% |impvmixt$vertical_mix_
|| 1.9% | 1,064.8 | 124.2 | 10.5% |impvmixt_correct$vertical_mix_
||==
| 22.5% | 12,513.4 | -- | -- |ETC
||--
|| 20.1% | 11,151.4 | 2,758.6 | 19.9% |__cray_memcpy_KNL
||==
| 20.7% | 11,503.5 | -- | -- |MPI
||--
|| 11.1% | 6,171.6 | 1,785.4 | 22.5% |MPI_ALLREDUCE
|| 7.9% | 4,377.8 | 3,254.2 | 42.7% |mpi_waitall

June 2018 Copyright 2018 Cray Inc.
14

Example: perftools-lite Observations
MPI Grid Detection:

There appears to be point-to-point MPI communication in a 32 X 32

grid pattern. The 20.7% of the total execution time spent in MPI

functions might be reduced with a rank order that maximizes

communication between ranks on the same node. The effect of several

rank orders is estimated below.

A file named MPICH_RANK_ORDER.Grid was generated along with this

report and contains usage instructions and the Hilbert rank order

from the following table.

Rank Order On-Node On-Node MPICH_RANK_REORDER_METHOD

Bytes/PE Bytes/PE%

of Total

Bytes/PE

Hilbert 1.413e+12 81.94% 3

SMP 1.053e+12 61.04% 1

Fold 9.405e+11 54.53% 2

RoundRobin 8.962e+11 51.96% 0

June 2018 Copyright 2018 Cray Inc.
15

Example: perftools-lite Hot Spots by Line
Table 3: Profile by Group, Function, and Line

Samp% | Samp | Imb. | Imb. | Group

| | Samp | Samp% | Function

| | | | Source

| | | | Line

| | | | PE=HIDE

100.0% | 60,665.8 | -- | -- | Total

|---

| 94.6% | 57,390.6 | -- | -- | USER

||--

|| 82.1% | 49,835.3 | -- | -- | LAMMPS_NS::PairLJCut::compute

|||---

3|| 80.7% | 48,970.1 | -- | -- | src/Obj_xc30intel/../pair_lj_cut.cpp

||||--

4||| 3.9% | 2,359.8 | 100.2 | 4.1% | line.102

4||| 1.0% | 596.2 | 61.8 | 9.5% | line.105

4||| 8.3% | 5,022.4 | 683.6 | 12.1% | line.107

4||| 2.9% | 1,744.2 | 966.8 | 36.0% | line.108

June 2018 Copyright 2018 Cray Inc.
16

Don’t See an Expected Function?

● To make the profile easier to interpret, samples are
attributed to a caller that is either a user defined function, or
a library function called directly by a user defined function

● To disable this adjustment, and show functions actually
sampled, use the ‘pat_report –P’ option to disable
pruning

● You should be able to see the caller/callee relationship with
‘pat_report -P -O callers’

June 2018 Copyright 2018 Cray Inc.
17

Don’t See an Expected Function? (cont’d)

● Why don’t I see a particular function in the report?

● Cray tools filter out data that may distract you
● Use pat_report –T to see functions that didn’t take much time

● Still don’t see it?
● Check the compiler listing to see if the function was inlined

June 2018 Copyright 2018 Cray Inc.
18

What is ETC Group in the Report?

● When a function is called that cannot be attributed to a
user-defined parent function, it gets placed in ETC

● Try ‘pat_report –P’

● Note: pat_report depends on the accuracy of the
DWARF issued by the compiler

June 2018 Copyright 2018 Cray Inc.
19

How Do I See per-Rank or per-Thread Data?

● $ pat_report –s pe=ALL

● $ pat_report –s th=ALL

June 2018 Copyright 2018 Cray Inc.
20

Focus on MPI Communication Bottlenecks

● user@login> module load perftools

● Build program
● Remember to add –hlist=a to build with CCE listing

● Instrument program, only focusing on MPI
● user@login> pat_build –g mpi ./my_program

● Run instrumented program (my_program+pat)

● Create report
● user@login> pat_report my_data_directory+12t/ > my_report

June 2018 Copyright 2018 Cray Inc.
21

Focus on Loop Optimization – Find Top Loops

● $ module load perftools-lite-loops

● Build program with CCE
● Should see messages from CrayPat during build saying that it created an

instrumented executable

● Remember to add –hlist=a to build with CCE listing

● Add –hpl=/path_to_program_library/my_program.pl if you want to use
Reveal

● Run program

● Performance data sent to STDOUT and to directory with unique name

June 2018 Copyright 2018 Cray Inc.
22

Table 2: Loop Stats by Function

Loop | Loop | Loop | Loop | Loop |Function=/.LOOP[.]

Incl | Hit | Trips | Trips | Trips | PE=HIDE

Time | | Avg | Min | Max |

Total | | | | |

|--

| 8.995914 | 100 | 25 | 0 | 25 |sweepy_.LOOP.1.li.33

| 8.995604 | 2500 | 25 | 0 | 25 |sweepy_.LOOP.2.li.34

| 8.894750 | 50 | 25 | 0 | 25 |sweepz_.LOOP.05.li.49

| 8.894637 | 1250 | 25 | 0 | 25 |sweepz_.LOOP.06.li.50

| 4.420629 | 50 | 25 | 0 | 25 |sweepx2_.LOOP.1.li.29

| 4.420536 | 1250 | 25 | 0 | 25 |sweepx2_.LOOP.2.li.30

| 4.387534 | 50 | 25 | 0 | 25 |sweepx1_.LOOP.1.li.29

| 4.387457 | 1250 | 25 | 0 | 25 |sweepx1_.LOOP.2.li.30

| 2.523214 | 187500 | 107 | 0 | 107 |riemann_.LOOP.2.li.63

Example Loop Statistics (to STDOUT)

June 2018 Copyright 2018 Cray Inc.
23

Documentation

June 2018 Copyright 2018 Cray Inc.
24

● Release Notes
● > module help perftools-base/version_number

● User manual “Using the Cray Performance Measurement
and Analysis Tools” available at http://pubs.cray.com

● pat_help – interactive help utility on the Cray Performance
toolset

● Man pages

http://pubs.cray.com/

Man Pages

June 2018 Copyright 2018 Cray Inc.
25

● intro_craypat(1)
● Introduces the craypat performance tool
● Runtime environment variables (enable full trace, etc.)

● pat_build(1)
● Instrument a program for performance analysis

● pat_help(1)
● Interactive online help utility

● pat_report(1)
● Generate performance report in both text and for use with GUI

Report Table Notes Section

● Check the Notes before each table in the text report
Notes for table 5:

The Total value for Process HiMem (MBytes), Process Time is the avg
for the PE values.

The value shown for Process HiMem is calculated from information in
the /proc/self/numa_maps files captured near the end of the program.
It is the total size of all pages, including huge pages, that were
actually mapped into physical memory from both private and shared
memory segments.

This table shows only the maximum, median, minimum PE entries,
sorted by Process Time.

June 2018 Copyright 2018 Cray Inc.
26

Report Generation at Scale

Release Data Processing Time Report Generation Time

6.4.6 508s 11132s

6.5.0 32s

7.0.1 15s 261s

CP2K on 200 Intel Broadwell Nodes (7200 MPI Ranks)

● pat_report execution time reduced significantly!

● Results in less impact on overall job execution
● pat_report run at end of job with perftools-lite

June 2018 Copyright 2018 Cray Inc.
27

Additional Controls for Report Generation

perftools-lite:

● Optionally run pat_report on the data directory from login node
● export PAT_RT_REPORT_CMD=pat_report,-Q0
● Reduces job execution time, but disables parallel pat_report

execution

perftools-lite or perftools:

● For a quick preview of performance data, use subset of data to
generate a report
● user@login> pat_report -Q1 ç report from 1st ap2 file
● user@login> pat_report –Q3 ç report from 1st, middle, and last file

June 2018 Copyright 2018 Cray Inc.
28

Controlling Instrumentation and Data

● Record Subset of PEs during execution
● It works again! (we found that it was broken last year)
● Example: export PAT_RT_EXPFILE_PES=0,4,5,10

● Don’t instrument select binaries when using perftools-lite
● Good for applications that generate test or intermediate binaries with

CMake and GNU Autotools

● Use CRAYPAT_LITE_WHITELIST for binaries you DO want
instrumented

June 2018 Copyright 2018 Cray Inc.
29

pat_run

Utility that allows you to profile un-instrumented, dynamically
linked binaries with CrayPat!

● Delivers Cray performance tools profiling information for
codes that cannot easily be rebuilt

● Makes profiling possible for a wider set of HPC applications

● Available starting with perftools 7.0.1

● Initially targets Cray XC systems running CLE 6 or later

June 2018 Copyright 2018 Cray Inc.
30

Using pat_run

● Insert before executable in run command
● user@login> srun –n 16 pat_run ./my_program

● user@login> pat_report expdir > my_report

● Use existing perftools capability
● Optionally collect a different group of performance counters

● user@login> export PAT_RT_PERFCTR=1
● user@login> aprun -n 16 pat_run ./my_program

● Perform other experiments, for example trace MPI routines
● user@login> pat_run -g mpi ./my_program

● Create additional views of the data with pat_report options, such as
● user@login> pat_report –P –O callers+src

June 2018 Copyright 2018 Cray Inc.
31

What About Memory Bandwidth?

● Phased in over perftools 7.0.0, 7.0.1, and 7.0.2 for Intel Xeon
processors

● New default counter group with perftools-lite and perftools
experiments

● New table for memory bandwidth by NUMA node in default
lite and full reports

● Separate functionality from perftools-lite-hbm experiment
which uses CCE, CrayPat, and Reveal to tracks memory
traffic and associate with allocation sites

June 2018 Copyright 2018 Cray Inc.
32

Table 1: Memory Bandwidth by Numanode

Memory | Local | Remote | Thread | Memory | Memory | Numanode
Traffic | Memory | Memory | Time | Traffic | Traffic | Node Id
GBytes | Traffic | Traffic | | GBytes | / | PE=HIDE

| GBytes | GBytes | | / Sec | Nominal | Thread=HIDE
| | | | | Peak |

39,429 | 39,429 | 0 | 990.218871 | 39.82 | 33.4% | Max of Numanode values
|---
| 39,429 | 39,429 | 0 | 990.217439 | 39.82 | 33.4% | numanode.0
||--
|| 39,429 | 39,429 | 0 | 990.217439 | 39.82 | 33.4% | nid.200
|| 38,389 | 38,389 | 0 | 990.224163 | 38.77 | 32.5% | nid.205
||==
| 38,857 | 38,857 | 0 | 990.218903 | 39.24 | 32.9% | numanode.1
||--
|| 38,857 | 38,857 | 0 | 990.211194 | 39.24 | 32.9% | nid.200
|| 38,528 | 38,528 | 0 | 990.226690 | 38.91 | 32.6% | nid.205

Example: Memory Bandwidth per NUMA
8 MPI ranks, 4 on each of 2 nodes

June 2018 Copyright 2018 Cray Inc.
33

Memory Bandwidth Table Tidbits

● Treat socket as NUMA node
● numanode.0 ß number represents socket

● Max memory speed used in %peak calculation
● 7.0.1: hard coded based on theoretical
● 7.0.2: obtain speed using rca

● Time is reported per thread
● Thread time is lifetime of thread (pure MPI programs report thread0)

● Traffic split into local and remote with respect to numanode

June 2018 Copyright 2018 Cray Inc.
34

Memory High Water Over Time (Apprentice2)

Produced with:
pat_build ./my_program
PAT_RT_SAMPLING_DATA=memory
PAT_RT_SUMMARY=0

June 2018 Copyright 2018 Cray Inc.
35

Summary

● Cray performance tools offer functionality that reduces
the time investment associated with porting and tuning
applications on new and existing Cray systems

● Cray performance tools come with a simple interface
plus a wealth of capability when you need it for
analyzing those most critical production codes

June 2018 Copyright 2018 Cray Inc.
36

